

FXIVE: INVESTIGATION AND IMPLEMENTATION OF A
SOUND EFFECT SYNTHESIS SERVICE

Parham Bahadoran1,2, Adán L. Benito1,2, Will Buchanan1,3 and Joshua D. Reiss2
1FXive, 2Queen Mary University of London, 3RPPtv

United Kingdom
ABSTRACT

FXive is a real-time online sound effect synthesis service. It replaces the
need for reliance on sound effect sample libraries in sound design. In this
paper, we describe the motivation, framework, sound synthesis
techniques, interfaces and means of interaction for FXive. The system is
comprised of a library of synthesis models, audio effects, post-processing
tools, temporal and spatial placement functionality for the user to create
scenes from scratch or from pre-existing pre-sets. The real-time nature
allows the user to manipulate multiple parameters to shape the sound at
the point of creation. Semantic descriptors are mapped to low level
parameters in order to provide an intuitive means of user manipulation.
Post-processing features allow for the auditory, temporal and spatial
manipulation of these individual sound effects.

1. INTRODUCTION

High quality audio is essential to the creative industries. Sound effects are often defined as
non-musical, non-speech sounds used in creative contexts such as film, games or virtual
reality. Sound effects add vital cues for listeners and viewers across a range of media
content. The process of sourcing such sounds is often achieved through Foley [1] or via
use of large databases of pre-recorded audio samples.

The development of more realistic, interactive, immersive sound effects is an exciting and
growing area of research. Sound synthesis, where sound is generated through artificial
means, either in analogue or digital or a combination of the two, is a promising approach
for higher quality sound effects. Many synthesis techniques completely avoid reliance on
samples. Lloyd [2] demonstrated that synthesized sounds can often be indistinguishable
from real recordings.
Procedural audio, where sound is created in real-time according to a set of programmatic
rules and live inputs can be viewed as a subset of sound synthesis with a particular
emphasis on control and interaction. In subjective evaluation experiments, Bottcher and
Serafin [3] demonstrated that in an interactive gameplay environment, 71% of users found
synthesis methods more entertaining than audio sampling.
Yet sound synthesis and procedural audio have yet to gain widespread popularity in
practice. Synthesis of high quality effects is often too computationally expensive to be
considered a viable alternative, and general-purpose synthesisers may result in the design
process being arduous for sound designers.
The aim of this paper is to demonstrate that reliance on sample libraries can be avoided by
the use of lightweight and versatile sound synthesis models. Such models do not rely on

Figure 1 – Architecture of FXive

stored samples and provide a rich range of sounds. Rather than searching libraries and
attempting to fit samples to a desired goal, sounds can be shaped at the point of creation.

We introduce an online real-time sound effects synthesis platform, FXive [4,5], which
demonstrates this concept. We present its different components, including sound source
modules and post-processing tools. The platform reduces the technical knowledge
required to produce high quality, realistic sound samples through synthesis while
alleviating the restrictions imposed by pre-recorded audio.

A large spectrum of sounds is procedurally [6] generated through custom DSP synthesis
algorithms. Table 1 lists all bespoke synthesis models that have been integrated into the
platform. Many of the models have been evaluated in terms of their quality and realism
using the framework described in [7]. Two further models outside the standard framework
are also provided; a sinusoidal model allowing the user to synthesise sounds based on
sample analysis, and a latent force model demonstrating this for selected impact and
musical instrument sounds [8].

2. ARCHITECTURE

FXive’s framework is written entirely in
JavaScript and relies on a client-side
architecture. Sound generation and
manipulation is achieved through the
employment of the Web Audio API (WAA)[9]
and customised JavaScript processors and
functions to handle interactions. Every
synthesis model and audio effect is
encapsulated using the JSAP[10] audio
plugin standard and audio chains are
handled by JSAP’s Plugin Factory. This
provides increased flexibility by allowing the
creation of complex interconnected audio
graphs in a number of configurations.

The framework takes handles the
sequencing, loading and creation of different
chains and resources and creates automatic
connections between interface elements
and plugin’s parameters. Sounds generated
using the models and post-processing tools
can be recorded by the user and rendered
to a stereo track to be downloaded as a wav
file.

Two global chains are differentiated in this architecture: the sound-effect chain, composed
by one or more sound effect plugins in parallel, and the post-processing chain, which is
comprised of a series of audio processing and spatialisation tools (see Fig 1).

Figure 2 – Interface for the siren synthesis model. Not shown are audio effects,
randomisation, timeline and spatialization.

Sound Effects

All sounds found on FXive are built with real-time sound synthesis models tuned to
synthesise an accurate representation of a class of sounds while exposing parameters that
control the sound qualities. Though synthesis models are tailored to generate a a diverse
range of sounds within a sound class and do not require use of samples, the availability of
control parameters allows production of large banks of pre-sets. A portion of the interface
for one such synthesis model, the siren, is depicted in Fig 2. Additional benefits over pre-
recorded audio files include the ability to manipulate the audio source. This means
characteristics such as pitch and duration may be determined by the user without the need
to pitch shift and time stretch any audio. The mapping of low level features to perceptually
intuitive controls allows for quick manipulation in order to fine-tune sound effects to suit a
particular situation.

Soundscapes

Sound scenes (or soundscapes) are offered within the framework as a conjunction of
parallel synthesis models forming the sound effect chain. These combinations of sounds
form more complex textures and illustrate what can be achieved with the platform. Each
synthesis model has parameters exposed to the user in addition to overall control and
processing of the soundscape. Example soundscapes models incorporated into FXive
include a stormy day with rain, wind, stream and thunder models, and a night campsite
scene with fire, wind, crickets and insects.

Navigation

The platform provides several forms of interaction and aims to provide an intuitive user
experience and an easy path to access what different users may need. Different users
may prefer to search for and download a sound effect in a few seconds, manipulate a
synthesis model to edit and adjust a pre-set, or shape a new sound from scratch.

A pre-set search functionality is available from the homepage. It allows searching for a
particular sound which will populate a list of pre-sets from all models matching the
searched keyword, e.g. pre-determined parameters for the sound of an electric toothbrush
within the synthesis model for DC motor sounds. A dedicated Pre-sets page also exists for
browsing through all pre-sets from different models. There are currently over 130 pre-sets
available.

For each pre-set there are options of either downloading a short snippet or visiting the
model’s page with the pre-set loaded and ready to manipulate or download. For a more
detailed approach, a Models page is provided that can be browsed for a full list of all
synthesis models (see Table 1). The models incorporate the full range of sound effects,
including sound textures, impact sounds and soundscapes.

3. INTERACTIONS AND INTERFACES

Due to the nature of the development techniques discussed in Section 2, models can be
regarded as self-contained sound source applications. This provides the flexibility to
interact with them in different ways. One or more synthesis model can be chained together
and manipulated using an interface. Furthermore, a URL query system can be used on an
external host to trigger different actions from the models without the need for a user
interface.

Parameter Controls

The low-level parameters of sound synthesis algorithms are mapped to semantically
meaningful descriptors which are exposed to the user. Each model is given parameters
which either describe a physical or real-world characteristic of the sound being generated
(e.g. density of rain, crackling of fire) or a semantic descriptor commonly used for sound
design (e.g. warmth, depth). This allows the user to manipulate the synthesis engine
without the need for deep understanding of the algorithm being employed.

A graphical user interface is designed using NexusUI [11] with a variety of control objects for
manipulating one or a combination of parameters. The objects are mostly those used in
typical audio software, e.g. buttons, sliders and knobs. Other control objects are sometimes
used to concisely convey elaborate control parameters. Device orientation and motion
tracking is also proposed to create more complex combinations of parameters with temporal
and spatial attributes. This allows aspects of sound synthesis to be controlled by movement
of eligible devices (e.g. a mobile phone).

Table 1: Summary of models offered on the platform, their classification, and the works
from which they were informed. ’O’ indicates that it is based on an original design.

Category Model Basic Description Based on

Action

Applause Distributed and synchronised hand‐claps based on filtered, shaped noise bursts [12]

Creaking door Creaky sound of a door opening/closing, controllable door movement [13, 14]

Footsteps Quasi‐periodic sequence of shaped impacts on various surfaces [15, 16]

Shaker Pseudorandom overlapping and adding of small grains of sound [17]

Swinging
object Aeroacoustic model of objects swung in the air based on compact sources [18‐20]

Whistle Noise, modulated and passed through resonant filters [21]

Animal

Birds FM and AM synthetic bird call sounds [22]

Insects A composite model made of several families of insect sounds [22, 23]

Mammal
sounds Wolf howl and lion roaring based on physical models of vocal chords [24]

Artificial

Alert Frequency sweep modulated by fast rising and falling amplitude envelope, delay based resonators and
filters

[22]

Beep Oscillators multiplied by control signal that alternates between 0 and 1 at fixed intervals O

Droid Shaped oscillators imitating droids talking sound [22]

Lightsabre Sheath and unsheath noise made of delayed noise for phase interaction. Hum and swing sounds from
swept oscillator frequencies

[22]

Ringtones Four‐tone frequency‐modulated ring sounds [22]

Siren Two Siren models with tunable parameters for many types of emergency vehicle siren sounds O

Telephone Modern (DTMF) and old dialing and ringing phone sounds [22]

Teleport Frequency modulated sawtooth sent to flanger and filterbank [22]

Whoosh Bandpass‐filtered noise with amplitude and frequency envelopes O

Environmental

Aeolian tones Aeroacoustic model of air passing through a string [18, 25]

Bubbles Pseudorandom overlapping and adding of small grains of sound [21]

Electricity Electric hum and spark noises with phasing [22]

Fire Sound of fire, controllable crackle, hissing and lapping components [22]

Pouring water Sound of pouring liquid into a container with bubbles and waterflow components [22]

Rain Sound of rain, controllable density, rumble and ambience [22]

Stream Sound of running water, controllable bubble density and sound texture [22]

Thunder Combination of noise sources, staggered delays, waveshaping, and delay‐based echo. [22]

Wind Howling wind, gusts and wails based on air passing by different objects [22]

Impact

Bouncing Filtered noise mimics impact material. Bounce intervals calculated using coefficient of restitution
according to object and initial height

O

Explosion Filtered white and pink noise modulated using exponential ADSR envelopes O

Gun AK47 with shell detonation and gas explosion, generates variety of other gun sounds [22]

Gunshot Modal synthesis with incorporated residual [26]

Metal impact Modal synthesis of metal impacts O

Ricochet Fast filter sweep of noise source to mimic a doppler effect [22]

Rocket Sound of complete rocket launch, chamber, exit noise and rocket components [22]

Rolling Physical model of rapid sequence of impact sounds [27]

Mechanical

Clock Filtered noise with delay‐line based resonators [22]

Electric motor Physical model of a DC motor [28]

Fan Blade, Motor and noise components, produces a range of propeller and motor sounds [22]

Jet Turbine comprised of clipped oscillators, burn comprised of filtered and clipped noise. Both modulated
according to engine speed

[22]

Propeller Aeroacoustic model of propeller‐powered aircraft sounds [18, 29]

Squeaky toy Sequence of filtered, modulated noise bursts O

Switch Rapid sequence of short click sounds [22]

Soundscape

Factory Adjustable sound scene of various machinery and artificial sounds O

Night scene An adjustable sound scene comprised of light wind, fire and cricket sounds O

Stormy day Sound scene created combining thunder, wind, rain and stream sounds [22]

Audio Effects and Processors

A chain of common post-processing effects has been included accompanying each model
for further sculpting and manipulation of the source. This chain is comprised of a distortion
effect that permits precise shaping of its clipping curve, feedback delay, convolutional
reverb that offers a selection of impulse responses, 5-band parametric equaliser, master
gain and panning. Each audio effect can be bypassed accordingly and the sound effect
muted if necessary.

Randomisation

Values of sliders on the interface can be randomised by the user via a dedicated set of
controls. Randomisation takes part within the sliders’ range and always employs the last
user input as a reference point to calculate the random variations. A control parameter
allows the user to select a percentage of the range over which the new values will span. A
button permits triggering of randomisation at will.

Spatialisation

A Spatialisation feature is built using the WAA’s PannerNode which places the sound
source around the listener on a 3D Cartesian coordinate. This technique allows
manipulating the location and movement of sound sources and may be used as a powerful
sound design tool to further sculpt sound scenes.

The spatialisation model takes into account the sound objects’ direction, orientation,
velocity and distance from the listener. A two-part interface to place the sound source in a
3D coordinate system. A two dimensional slider is used to place the sound horizontally
(left/right) and vertically (above/below) around the listener and an additional slider controls
the third dimension (front/back).

Timeline

As shown in Figure 3, a timeline feature is implemented for triggering a model at specific
times. Individual timeline tracks can be generated and used to trigger each of the
parameters of the model. The current version of this feature provides discrete sequencer
tracks with adjustable step size and sequence length, and an option for looping.

Each trigger-based parameter can be triggered at desired times by marking those points
on the timeline of the trigger track. Parameters which can be used include model trigger
parameters (e.g. fire, explode, hit, etc), any of the pre-sets and the Randomiser. The
Randomiser can be triggered at specific intervals to applying a small percentage of
randomisation to the model parameters and create a natural variation in the synthesis over
time.

Figure 3 – Interface for the triggering of model parameters, allowing sounds and actions to
be sequenced on a timeline.

Online query system

FXive’s framework allows sound effects to be queried by a host via URL without the need
for manual setting of their parameters. The framework decodes and interprets the query
string and sets the different actions accordingly. The correct sequencing and loading of
events related to both audio chains and processing is taken care of by the frame work. All
interpretation and sequencing processes are automated by specific JavaScript routines
once the URL has been loaded. Audio is still generated real-time on client-side and relies
on browser compatibility with the WAA. This query system can be used to set pre-sets
automatically, update and edit plugin states, trigger buttons and even download recorded
excerpts.

4. SUMMARY

This paper introduced an online real-time sound effect synthesis service. The platform is
built around a database of bespoke sound effect synthesis models, which are based on
algorithms that have been fine-tuned and adapted for generating a large spectrum of
sounds. Synthesis models are developed with the sound design process kept in mind, so
meaningful control parameters are provided. This library of sound effect synthesis models,
post-processing tools and temporal and spatial placement functionality provides the user
with enough functionality to produce a wide range sound effects of high quality and
flexibility, suitable for use in sound design projects.

Planned future developments include the ability to render output in multiple formats,
especially object-based audio. Sound effects from sample libraries are typically delivered

as monaural or stereo, so an object-based format will move beyond another limitation of
current approaches by allowing native rendering for immersive applications. A tagging
feature would also allow user-generated and contributed parameter settings, thus greatly
increasing the number of pre-sets.

FXive can be accessed online at http://fxive.com with the Chrome browser.

5. ACKNOWLEDGMENTS

This research was supported by the following InnovateUK grants in collaboration with
RPPtv: Autonomous Systems for Sound Integration and GeneratioN (2017-18), SFX
Synthesis Service (2016-18) and Real-time synthesised sound effects cloud service
RTSFX (2015-16).

REFERENCES

[1] Ament, V. T., The Foley grail: The art of performing sound for film, games, and animation, CRC Press,
2014.
[2] Lloyd, D. et al.. "Sound synthesis for impact sounds in video games." ACM Symposium on Interactive
3D Graphics and Games, pp. 55-61, 2011.
[3] Niels Bottcher, N. and Serafin, S., “Design and evaluation of physically inspired models of sound effects
in computer games,” 35th Intl. Audio Engineering Society Conference: Audio for Games, London, 2009.
[4] Bahadoran, P., et al., “A System for Online Sound Effect Synthesis,” 2017, UK Patent 1719854.0
(Pending).
[5] P. Bahadoran, et al., FXive: A Web Platform for Procedural Sound Synthesis, 144th Audio Engineering
Society Conv., May 2018.
[6] Farnell, A., “An introduction to procedural audio and its application in computer games,” Audio Mostly,
v. 23, 2007.
[7] Moffat, D. and Reiss, J. D., “Perceptual Evaluation of Synthesized Sound Effects,” ACM Transactions on
Applied Perception, 15 (2), April 2018.
[8] Wilkinson, W., et al., “Latent force models for sound: Learning modal synthesis parameters and
excitation functions from audio recordings,” 20th International Conference on Digital Audio Effects, 2017.
[9] Adenot, P. and Wilson, C., “Web audio API,” W3C Working Draft, December 2015.
[10] Jillings, N., et al., “JSAP: A plugin standard for the web audio API with intelligent functionality,”
Audio Engineering Society Convention 141, 2016.
[11] Taylor, B. et al., “Simplified Expressive Mobile Development with NexusUI, NexusUp, and
NexusDrop.” NIME, pp. 257–262, 2014.
[12] Adami, A., et al., “On Similarity and Density of Applause Sounds,” Journal of the Audio Engineering
Society, 65(11), pp. 897–913, 2017.
[13] Heinrichs, C., et al., “Human performance of computational sound models for immersive
environments,” The New Soundtrack, 4(2), pp. 139–155, 2014.
[14] Heinrichs, C. and McPherson, A., “Mapping and Interaction Strategies for Performing Environmental
Sound,” IEEE VR Workshop: Sonic Interaction in Virtual Environments (SIVE), 2014.
[15] Turchet, L., et al., “What do your footsteps sound like? An investigation on interactive footstep sounds
adjustment.” Applied Acoustics, 111, pp. 77–85, 2016.
[16] Farnell, A., “Marching onwards: procedural synthetic footsteps for video games and animation,” Pure
Data Convention, 2007.
[17] Cook, P., “Physically informed sonic modeling (phism): Synthesis of percussive sounds,” Computer
Music Journal, 21(3), pp. 38–49, 1997.
[18] Selfridge, R., et al., “Creating Real-Time Aeroacoustic Sound Effects Using Physically Derived
Models,” Journal of the Audio Engineering Society (to appear), 2018.

[19] Selfridge, R., et al., “Sound synthesis of objects swinging through air using physical models,” Applied
Sciences, 7(11), p. 1177, 2017.
[20] Selfridge, R., et al., “Real-time Physical Model for Synthesis of Sword Swing Sounds,” 14th Sound and
Music Computing Conference, 2017.
[21] Cook, P. R, Real sound synthesis for interactive applications, CRC Press, 2002.
[22] Farnell, Andy, Designing sound, MIT Press, 2010.
[23] Pekonen, J. and Jylhä, A., “3-D Sound Synthesis of a Honeybee Swarm,” Audio Eng. Soc. Conv. 127,
2009.
[24] Wilkinson, W. and Reiss, J. D, “A Synthesis Model for Mammalian Vocalization Sound Effects,” 61st
Audio Engineering Society Conference: Audio for Games, 2016.
[25] Selfridge, R., et al., “Physically derived synthesis model of an Aeolian tone,” Audio Engineering
Society Convention 141, 2016.
[26] Mengual, L., et al., “Modal Synthesis of Weapon Sounds,” 61st Audio Engineering Society Conf.:
Audio for Games, 2016.
[27] Rocchesso, D. and Fontana, Federico, The sounding object, Mondo estremo, 2003.
[28] Hendry, S. and Reiss, J. D., “Physical Modeling and Synthesis of Motor Noise for Replication of a
Sound Effects Library,” 129th AES Convention, San Francisco, 2010.
[29] Selfridge, R., et al., “Physically Derived Sound Synthesis Model of a Propeller,” 12th Audio Mostly
Conf., p. 16, ACM, 2017.

